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Fewer than half of all patients with advanced-stage high-grade serous
ovarian cancers (HGSCs) survive more than five years after diagnosis, but
those who have an exceptionally long survival could provide insights into
tumor biology and therapeutic approaches. We analyzed 60 patients with
advanced-stage HGSC who survived more than 10 years after diagnosis
using whole-genome sequencing, transcriptome and methylome profiling
of their primary tumor samples, comparing this data to 66 short- or
moderate-term survivors. Tumors of long-term survivors were more likely
to have multiple alterations in genes associated with DNA repair and more
frequent somatic variants resultingin anincreased predicted neoantigen
load. Patients clustered into survival groups based on genomic and immune
cell signatures, including three subsets of patients with BRCAI alterations
with distinctly different outcomes. Specific combinations of germline and
somatic gene alterations, tumor cell phenotypes and differential immune
responses appear to contribute to long-term survival in HGSC.

Patients diagnosed with advanced HGSC have a 5-year survival rate of HGSChas the highest frequency of germline alterationsin homolo-
41%', and fewer than 15% survive more than 10 years’. Treatment usu-  gous recombination DNA repair genes including BRCAI1 and BRCA2*®
ally consists of debulking surgery followed by adjuvant platinumand  and is among the most chromosomally unstable of any cancer type’
paclitaxel-based chemotherapy, or increasingly, neoadjuvantchemo-  withnear ubiquitous somatic TP53alterations”. Prognostic biomark-
therapy and interval debulking surgery®. Tumor stage and the extentof  ers include gene expression-based molecular subtype", CCNEI gene

surgical removal areimportantclinical predictors of patient surviva

1*5, amplification'?, tumorimmune cellinfiltration™, and tumor DNA repair
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status™'°. Approximately 50% of HGSC have defects in homologous
recombination-mediated DNA repair pathway genes”* and homolo-
gous recombination defective cancers show increased sensitivity to
platinumand inhibitors of poly(ADP-ribose) polymerase 1 (PARPi)""2°.
Patients with germline BRCA1 or BRCA2 mutations have alonger 5-year
survival than noncarriers®”, although this survival advantage is lost in
patients with BRCAI mutations over time?®.

A subgroup of patients with HGSC with apparently poor progno-
sis disease at presentation have a remarkable response to treatment
and extraordinary long-term survival, including a small number with
incomplete removal of macroscopic disease following surgery?. The
extent to which known clinical, immune and molecular biomarkers
can explain exceptionally long survival in HGSC is unclear. Here, we
genomically characterize patients with HGSC who have survived more
than10 years after diagnosis.

Results

Long-term survivor cohort

Weaccessed Australian and United States ovarian cancer biobanks with
detailed, longitudinal clinical follow-up data collection to ascertain
60 long-term survivors (overall survival (OS) greater than 10 years
from diagnosis). These were compared with patients from our earlier
study™ that included 34 short-term survivors (OS < 2 years) and 32
moderate-termsurvivors (OS > 2 and <10 years; Extended Data Fig.1a).
All patients had advanced-stage HGSC (stage IlIC-1V), and 70% (42/60)
of long-termsurvivors were alive at last follow-up, including 72% (43/60)
withmacroscopic residual disease at the conclusion of primary surgery,
which is awell-accepted adverse prognostic factor (Extended Data
Fig.1band Supplementary Table1). Among the long-term survivors with
residual disease were a subset with no disease recurrence (51%, 22/43),
indicating an exceptional response to primary treatment.

Pervasive DNA repair pathway alterations

We analyzed data from whole-genome sequencing (WGS; mean cov-
erage 64x tumor and 40x normal DNA), RNA sequencing (RNA-seq;
average 115 million paired reads) and methylome analysis on 126
cases: primary tumor samples from 60 long-term survivor patients,
and leveraging existing sequencing data from our previous study™, 7
of the included long-term survivors, 34 short-term survivors and 32
moderate-term survivors (Supplementary Tables 2-4).

The combined germline and somatic homologous recom-
bination alteration rate in long-term survivors (76.7%, 46/60) and
moderate-term survivors (78.1%, 25/32) were similar but were higher
compared withshort-termsurvivors (38.2%,13/34; P= 0.0012; Fig.1a).
These included germline mutations in BRCAI, BRCA2, BRIP1, PALB2
and RADSIC, somatic mutations in BRCAI, BRCA2, ATM, CDK12, PTEN,
RADS1B, RAD51C and RADS1D (Supplementary Tables 5 and 6) and
promoter methylation in BRCAI and RADSIC. Consistent with pre-
vious findings***, CCNEI gene amplification was largely mutually
exclusive with BRCAI (false discovery rate adjusted P value (P,g;) =
0.0169; co-occurrence in 1/126 primary tumors, 0.79%) and BRCA2
alterations (P,q; = 0.4554; co-occurrence in zero cases; Supplemen-
tary Note and Fig. 1b) and more prevalent in short-term survivors
(Fig.1a). The tumors of six long-term survivors showed CCNE1 ampli-
fication (Fig. 1b), an unexpected finding, as it is an established poor
prognostic marker associated with primary platinum resistance'>.
Inference of immune cell subsets from transcript data® revealed
enrichment of activated CD4 memory T cells (P,4; = 0.0050) and
CD8 T cells (P,4;= 0.0100) in CCNEI amplified tumors in long-term
survivors (n=6) compared to short-term survivors (n=11;
Supplementary Note).

We found examples of multiple co-occurring mutations in genes
involved in chromosome stability and DNA repair (Fig. 1b), most com-
monly dueto structural variants that interrupted open reading frames.
Long-term survivors had a higher proportion of tumors (28.3%,17/60)

with three or more altered DNA repair genes compared to moderate-
(15.6%, 5/32) and short-term survivors (5.9%, 2/34; P=0.0224;
Fig.1c). Patients whose tumors exhibited three or more DNA repair gene
alterations had longer OS (median OS, 11.2 years) compared to those
with two (median OS, 5.8 years), one (median OS 8.6 years) or no DNA
repair gene alterations (median OS, 2.2 years; P= 0.0136; Fig. 1d). DNA
repair pathway alterations were ranked from highest to lowest cancer
cell fraction in each sample, finding that the majority were clonal in
the first- (95.4%, 83/87) and second-ranked alterations (72.1%, 31/43),
whereas in tumor samples with more than two DNA repair alterations,
the third and fourth alterations were more likely to be subclonal (Sup-
plementary Note).

Homologous recombination-deficient (HRD) tumors rely on
error-prone DNA repair such as non-homologous end joining, which
generates distinct mutational scars”. We confirmed the functional
impact of homologous recombination alterations using CHORD?, inte-
grating base substitution, small-scale insertion and deletion (indel),
and structural rearrangement signatures to classify tumor genomes
as BRCAI-type HRD, BRCA2-type HRD, or homologous recombination
proficient (Fig.1b). Among tumors considered tobe HRD (CHORD score
>0.5), foralmost all (97.1%, 67/69), we identified the likely homologous
recombinationgene alteration driving the signature. Although gener-
ally either the BRCA1-type or BRCA2-type score was dominant, some
tumors showed evidence of amixture of both signatures, and in some
cases, this finding could be attributed to two or more altered homolo-
gous recombination genes (Fig. 1b). MMAY00758 was a long-term
survivor patient who experienced >11years progression-free and had
three homologous recombination pathway gene alterations, with
a germline RADS1C missense mutation and somatic structural vari-
ants in BRCA1 and BRIPI and evidence of both BRCA2-type (0.68) and
BRCA1-type (0.27) HRD scores (Fig. 1b; for additional examples, see
Supplementary Note). Mutationsin CDK12have been postulated to con-
tribute to an HRD phenotype®’; however, an assessment of mutational
scarring indicated that these tumors were homologous recombination
intact (Fig. 1b).

Recurrent mutationsinlong-termsurvivors

We confirmed our previous findings' of ubiquitous TP5S3 mutations,
infrequent nonsynonymous single-nucleotide variants (SNVs) and
indels in other cancer-associated genes, and common somatically
acquired structural variants and copy-number alterations (Supple-
mentary Data 1-3, Supplementary Table 7 and Supplementary Note),
including disruption of RB1, NF1, PTEN and RAD51B. MYH9, EZH2,
ARIDIB, TBL1XR1, ARIDIA, YWHAE, CREBBP, RHOA, ATRX, AXINI and
STAGI were identified as also disrupted by gene breakage (P,4;< 0.1;
Supplementary Data 2). Despite frequent gene breakage in HGSC, only
two recurrent in-frame gene fusions were identified (USP7-CARHSP1
and KIFIB-PGD), both at a frequency of 1.6% (2/126 primary tumors;
Supplementary Note).

Somatic alterations were enriched in specific cancer-associated
genes among the survival groups (Extended Data Fig. 2). Given the
limited number of independent HGSC whole genomes, we used
more readily available gene expression information™ to validate
findings. Among tumor suppressor genes frequently inactivated in
long-term survivors, low mRNA expression of ARID1B, RBI and NFI
was associated with longer OS (Supplementary Table 8; P < 0.05).
ARIDIA and ARIDI1B, two cancer-associated genes involved in switch/
sucrose non-fermentable (SWI/SNF) signaling, were both com-
monly disrupted by structural variants and had a combined somatic
alteration rate of 30% (18/60) in long-term survivors, compared to
15.6% (5/32) and 17.6% (6/34) in moderate- and short-term survivors,
respectively (Extended Data Fig. 2a). We also noted copy-number
variants (CNVs) involving cytokines (for example, CXCL9 and
IFNG) occurred at different frequencies in the survival cohorts
(Supplementary Note).
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Fig.1|HGSCs with multiple altered DNA repair pathway genes are associated
with long-termsurvival. a, Proportion of patients affected by homologous
recombination (HR) DNA repair pathway gene alterations and CCNE1 gene
amplification (aCCNEI) in each survival group. Homologous recombination
alterations include pathogenic germline (g) or somatic (s) mutations, and BRCAI
or RAD51C promoter methylation (m) as indicated. One alteration is counted

for patients with more than one change, prioritizing alterations by variant allele
frequency and/or by evidence of genomic scarring associated with the candidate
driver alteration. Differences in proportions of homologous recombination-
altered, CCNE1 amplified and wild-type tumors between survival groups were
assessed by chi-square. b, Bars at the top represent the number of alterations
ineach listed gene per patient. Pathogenic germline and somatic alterations
inhomologous recombination pathway genes are shown, as well as alterations

in other DNA repair associated genes, immune genes and CCNEI. Each patient
(column) is annotated with survival group (LTS, long-term survivor; MTS,

Years of follow-up

moderate-termsurvivor; STS, short-term survivor). Bars indicate the level of
homologous recombination deficiency (HRD) in each primary tumor sample,
measured as probabilities of BRCAI-type (orange) HRD, BRCA2-type (blue)
HRD, or homologous recombination proficiency (none, gray), as predicted

by CHORD?. Bar plots at the bottom indicate the proportion of total detected
structural variants (SV) classified as duplications, deletions, inversions or
interchromosomal translocations. Samples are grouped by the primary gene
alteration identified in each patient. Alteration count and proportion of
alteration types per gene are shown as bar plots on the right. ¢, Proportion of
patients with 0,1,2 or 3 or more DNA repair pathway alterations by survival
group (LTS, long-term survivor; MTS, moderate-term survivor; STS, short-term
survivor). Differences in proportions between groups were assessed by chi-
square. d, Kaplan-Meier analysis of progression-free survival (PFS) (left) and OS
in patients (right) with 0,1,2 or 3 or more DNA repair pathway alterations.
Pvalues calculated by Mantel-Cox log-rank test.
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Disease recurrence in long-term survivors

Tumor collection during recurrence and long-term survival are both
uncommon events, but we obtained samples from four patients at
relapse (Fig. 2a). Tumor-specific somatic alterations indicated thatin
all patients, samples were consistent with recurrence of their primary
tumor rather than a new malignancy (Fig. 2b,c and Supplementary
Note). BRCAI/2reversion mutations commonly impartacquired treat-
ment resistance® but were not detected in the relapse samples of three
patients with BRCAI mutations.

Patient MWMHOO0552 experienced 13.5 years of disease-free
remission before progressing rapidly and dying 18 months later from
progressive disease. Remarkably, although a large deletion over RB1
was found in the primary tumor, the emergent clone at recurrence
lacked this deletion and the patient experienced relatively short
duration responses to subsequent chemotherapy (Fig. 2c,d). Patient
MAOCO00944 had two different RBI deletions in their primary and
relapse sample (Fig. 2d) and was still alive at last follow-up (>10 years)
despite brain metastases. These findings support our observations
here and previously* that co-occurrence of RBI and BRCAI mutations
are associated with favorable response and outcome.

Patient MWMHOO758 experienced cycles of recurrence and
remission following an initial progression-free interval of >6 years.
The primary tumor had amplification of chemokines (CXCL9, CXCL10
and CXCL11) and was classified as the C2/immunoreactive molecular
subtype (Fig. 2¢), and this classification was maintained at first and
second relapse, consistent with the notion that the favorableimmune
subtype imparted a degree of tumor control over a lengthy period.
Patient MAOCO01893 had a solitary recurrence removed 3 years after
diagnosis and then remained progression-free and was alive at last
follow-up, 15 years after diagnosis (Fig. 2a). Of these four cases, the
genomic alterations in the recurrent tumor in MAOC01893 was most
similar to the primary tumor (Fig.2b). However, although the primary
tumor showed amplification of CXCL9, CXCL10 and CXCL11 and was
C2/immunoreactive molecular subtype”, consistent with good out-
come, the recurrence was Cl/mesenchymal molecular subtype and
lacked amplification of the chemokine genes (Fig. 2c). This finding
suggests thattherecurrencerepresented atreatment-resistant clone
with features associated with worse outcome and the patient may
have experienced a substantial clinical benefit from surgical removal.

Mutational signatures across survival groups

Toidentify genomic variation patterns that define survival subgroups,
we evaluated the contribution of previously identified genome-wide
mutational signatures, including base substitution signatures®, indel
signatures®” and ovary-specific rearrangement signatures™ (that is,
Ovary_Ato Ovary_G; Methods and Supplementary Tables 9 and 10).
Based on the most prominent 27 signatures (mean relative exposure
>0.04 across all 126 samples), we performed unsupervised clustering
of primary tumor samples. Samples segregated into seven clusters
(SIG.1-7; Fig. 3) with distinct molecular phenotypes (summarized in
Extended Data Fig. 3a), with SIG.1, SIG.4, SIG.6 and SIG.7 associated with
longer survival (progression-free survival, P= 0.0044; OS, P< 0.0001;
Extended Data Fig. 3b,c).

Clusters SIG.1 (n=14), SIG.2 (n=25) and SIG.3 (n =13) were
characterized by the tandem duplication (>100 kb) phenotype***
associated with loss-of-function CDK12 mutations and CCNE1 amplifi-
cation (P,4;=0.0004; Extended DataFigs.3d and 4a). Tumorsin these
groups were homologous recombination proficient (P, < 0.0001),
and patients were older at diagnosis (P,4;=0.0020; Extended
Data Figs. 4b and 5a). Despite having homologous recombination
proficient tumors with a high frequency of CCNEI amplification
(43%, 6/14), features typically associated with poor outcomes, cluster
SIG.1mostly comprised of long-term survivors (64%, 9/14; median OS
not reached). Tumors in cluster SIG.1 had a high number of duplica-
tions (P,g; < 0.0001) and inversions (P,4; = 0.0029), a higher mutation

burden and neoantigen count (P,4; < 0.0001), somatic alterations in
RADSIB (50%,7/14; P,4;= 0.0276) and enrichment of indel signatures 1
and2(P,4;< 0.0001; Extended DataFig. 5b), both thought to be caused
by slippage during DNA replication and associated with defective
DNA mismatch repair®’. By contrast, SIG.2 and SIG.3 tumors had fewer
mutations and structural variants, the lowest predicted neoantigen
burdens and a lack of DNA repair gene alterations and were associ-
ated with the shortest survival (median OS, 1.7 and 2.4 years, respec-
tively). SIG.3 tumors were also enriched for rearrangement signature
Ovary_D (unknowndriver; P,g; = 0.0002) and double-base substitution
(DBS) signature 11 (unknown etiology; P,4 < 0.0001), whereas SIG.2
tumors were enriched for single-base substitution (SBS) signature 5
(unknown etiology; P,4;< 0.0001), indel signature 4 (unknown etiol-
ogy; P,4 < 0.0001) and DBS signature 7 (P,q; < 0.0001), thought to be
associated with defective DNA mismatch repair.

Cluster SIG.4 tumors (n = 27) were highly enriched for BRCA2-type
nonclustered 1- to 100-kb deletions (consistent with rearrangement
signature Ovary_A; P,q; < 0.0001), DBS signature 4 (unknown etiology;
P,4;<0.0001), indel signature 6 (associated with HRD; P, < 0.0001)
and alterations in BRCA2 (P,4 < 0.0001), as well as multiple other DNA
repair pathway genes (P,4; < 0.0001; Fig. 3 and Extended DataFigs. 3-5).
Cluster SIG.4 genomes had the highest median mutation burden and
neoantigen count and almost all (25/27, 93%) had a high BRCA2-type
CHORD score (P,g; < 0.0001). Consistent with the previously identi-
fied BRCA2/deletion HGSC subgroup®®, cluster SIG.4 had the high-
est survival rate (21/27 (78%) long-term survivors), with a median OS
of 11.9 years.

BRCA1-altered tumor subgroups with differential outcomes
ClustersSIG.5 (n=22),SIG.6 (n=9)and SIG.7 (n = 16) were characterized
by BRCAI alterations (100%,100% and 94%, respectively, P,4; < 0.0001),
but the three groups had distinctly different survival outcomes
(Extended Data Figs. 3 and 4). All showed nonclustered 1- to 100-kb
tandem duplications, enrichment of rearrangement signature Ovary _G,
and BRCAI-type HRD scores (P,4 < 0.0001; Fig. 3 and Extended Data
Figs.3-5), consistent with their BRCAI mutational status. Of the BRCA1
groups, cluster SIG.7 had the highest proportion of long-term survivors
(75%,12/16; median OS, 10.4 years), followed by SIG.6 (56%, 5/9; median
OS, notreached) and SIG.5 (27%, 6/22; median OS, 4.5 years).

In a subset analysis considering only the BRCAI-altered clusters,
the key mutational signatures driving these clusters were DBS signa-
ture 2 in SIG.5 (P,;= 0.0050), rearrangement signature Ovary_A in
SIG.6 (P,g; = 0.0092) and SBS signature 40 (unknown etiology) in SIG.7
(P,;=0.0092; Supplementary Note). DBS signature 2 is proposed to
be associated with tobacco smoking and/or exposure to acetalde-
hyde, which is a constituent of cigarette smoke but also a metabolite
of alcohol®*. Self-reported smoking history was available for 84.9%
(107/126) of cases, and across the seven mutational signature clusters,
SIG.5had the highest frequency of smokers (66.7%,12/18; P,4;= 0.5092;
Extended Data Fig. 4b). We compared the relative contribution of
all mutational signatures between never-smokers (n = 60) and ever
smokers (n=47), and the most predominant mutational signature in
smokers was DBS signature 2 (P, = 0.5490; Supplementary Note). Of
all the mutational signature clusters, SIG.5 had the youngest age of
diagnosis (P,q;= 0.0020; Extended DataFig. 5a), consistent with these
patients being at a higher risk of developing cancer due to combined
BRCA1 deficiency and a history of smoking.

The prominence of rearrangement signature Ovary_A in cluster
SIG.6indicates there is amixture of BRCAI and BRCA2 deficiency in this
subgroup; this was corroborated by a higher prevalence of BRCA2-type
nonclustered1-to 100-kb deletions in SIG.6 relative to SIG.5 and SIG.7
(Extended Data Fig. 3d) and the detection of both BRCAI-type and
BRCA2-type HRD scores in SIG.6 tumors (Fig. 3). Tumors with com-
bined BRCAI and BRCA2 loss of function may have greater sensitivity
to platinum chemotherapy. Indeed, despite cluster SIG.6 having a high
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Fig.2| Genomic analysis of matched primary and recurrent HGSCin

four long-term survivors. a, Serum CA125 levels (solid black lines) onalog
scale (yaxis) of long-term survivor relapse cases (n = 4), measured at various
intervals over time (x axis). The upper limit of normal for CA125 (dotted gray
lines) can vary depending on the CA125 assay performed. Colored circles and
rectangles represent different lines of treatment as indicated. All patients
were diagnosed with stage [IIC HGSC at primary surgery (blue triangle). Also
indicated is the time of first progression (red triangle), additional surgeries
(purple asterisks), sequenced sample (red ring), death (gray cross) or date last
seen alive (green diamond). b, Circos plots summarize the structural variants
(lines) that are shared or unique between primary and relapse samples for each
caseasindicated. Bar plots below show the proportion of total shared and
unique structural variants (SVs) in each patient. In the patient with two relapse

samples, structural variants that were shared only by two tumor samples were
classified as “others”. ¢, Somatic (SM) and germline (GL) alterations in primary
and relapse tumor samples in genes of interest (rows). Each sample (column) is
annotated with sample type (primary or relapse) and molecular (Mol.) subtype"
ifRNA was available. Bars indicate the level of HRD in each tumor sample,
measured as probabilities of BRCAI-type (orange) HRD, BRCA2-type (blue)
HRD, or homologous recombination proficient (none, gray), as predicted by
CHORD?. Bar plots at the bottom indicate somatic mutation burdenin variants
per megabase (Mb) and SV counts in each sample. d, BigWig tracks of DNA
sequencing coverage (yaxis) in two paired primary (shaded blue) and relapse
(shaded red) tumor samples showing the locations (x axis) of deletions (blue
rectangles) identified in RBI.

proportion (56%, 5/9) of suboptimal residual disease (>1 cm) follow-
ing surgical cytoreduction (P,q;= 0.6131), this BRCAI subgroup had
the longest progression-free survival (median 9.9 years, P=0.0044),
indicating SIG.6 tumors were particularly platinum chemosensitive
(Extended DataFigs.3 and 4).

Patterns of DNA methylation

To determine whether tumor DNA methylation profiles were associated
withexceptional outcomes, we performed consensus clustering of the
1% most variable CpG sites (number of probes = 3,645) across all 126
primary tumors. Compared to mutational signatures, differential DNA
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Fig. 3| Long-term survivor tumor genomes are characterized by distinct
molecular phenotypes. Heatmap of mutational signatures following consensus
clustering based on proportions of mutational signature exposures in each
primary tumor sample (n =126). Patient (column) scaled z-scores are shown in
the heatmap. Seven mutational signature clusters were identified (SIG.1-SIG.7),
and each patient (column) is annotated with survival group (LTS, long-term

survivor; MTS, moderate-term survivor; STS, short-term survivor), status at
last follow-up (D, dead; P, progressed and alive; PF, progression-free and alive),
residual disease and age at diagnosis (in years; quartiles). Bars represent the
BRCAI-type (orange) and BRCA2-type (blue) HRD (CHORD?®) scores of each
tumor sample, and germline and somatic alterations affecting genes of interest
areshowninthe bottom panel.

methylation patterns were less discriminatory, with the five distinct
methylation clusters (MET.1,n=46;MET.2,n=14;MET.3,n=17, MET 4,
n=19; MET.5, n=30) showing moderate to weak associations with
progression-free (P=0.1949) and OS (P= 0.0587; Extended Data Fig. 6).
The strongest genomic difference between methylation clusters was
BRCAI alteration status, withenrichment of BRCAI-altered tumors (72%,
33/46) in cluster MET.1(P,4; < 0.0001; Supplementary Note). Patientsin
MET.1had arelatively poor survival (median OS, 5.7 years) compared
to MET.2 (median OS, 11.9 years), the most closely related clusterin the
dendrogram. The most striking differences between the two groups
were the proportion of smokers (MET.164% (23/36) vs. MET.2 8.3%
(1/12), P,4;=0.0225) and younger age of MET.1 patients (P,4; = 0.0059).
Therefore, the MET.1 cluster also identifies a subset of BRCAI-altered
tumorsassociated with smoking and arelatively poor survival, largely
overlapping with cluster SIG.5 (Supplementary Note).

Tumor mutation burden and immune transcriptional patterns
Ovarian cancer wasamongthe first documented examples of an asso-
ciationbetween lymphocyticinfiltration and survival®”’, an observation
confirmed in large patient cohorts™*® and individual case reports®.
We therefore characterized mutational burden as a driver of immune

response within the survival groups (Fig. 4 and Supplementary Note).
Consistentwitha previous report*’, long-term survivor tumor samples
had a higher tumor mutation burden (median of 4.66 mutations/Mb)
compared to short-term (3.27 mutations/Mb) and moderate-term sur-
vivors (3.25 mutations/Mb, P= 0.0003), and concordantly, long-term
survivors had the highestnumber of predicted neoantigens (P< 0.0001;
Fig. 4e). Both moderate- and long-term survivor tumors had more
structural variants compared to short-term survivors (P=0.0012;
Fig. 4e). Tumor neoantigen count was more strongly associated with
better survival (hazard ratio (HR) = 0.71, 95% confidence interval
(CI)=0.56-0.91, P=0.0069) compared with the number of muta-
tions (HR: 0.75, 95% Cl: 0.59-0.96, P= 0.0202) and structural variants
(HR:0.79,95% CI: 0.63-1.0, P= 0.0482; Fig. 4f).

We compared primary tumor gene expression profiles between
survival groups using fast gene set enrichment analysis (FGSEA") and
observed significantly perturbed MSigDB hallmark gene sets** (FGSEA
P,4; < 0.05; Extended Data Fig. 7a). The top five enriched gene sets
betweenlong-termsurvivors and short-termsurvivors were E2F targets
(overexpressed or ‘up’inlong- versus short-termsurvivors), epithelial
mesenchymal transition (down), allograft rejection (up), interferon
gamma response (up) and G,M checkpoint (up; FGSEA P, < 0.0001;
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Fig. 4 |Elevated somatic mutation burdeninlong-termsurvivors. a, Bars
indicate the total variant count of each primary tumor sample (n =126), including
SNVs, small-scale insertions and deletions (INDELs) and multinucleotide

variants (MNVs). b, Tumor samples are ordered left to right from fewest to

largest number of neoantigens (black bars). ¢, Bars indicate total number of
large-scale structural variants (SVs) in primary tumors, including duplications,
deletions, inversions and interchromosomal translocations. d, Bars indicate

the proportion of each tumor genome affected by CNVs, including regions

of gain, amplification, loss, homozygous deletion and copy-neutral loss of
heterozygosity (LOH). e, Violin plots represent the tumor mutation burden,

I Overall survival Progression-free survival

structural variant count and predicted neoantigen counts of tumor genomes
ineach survival group. Dashed lines represent the median and dotted lines
represent the lower and upper quartiles. Kruskal-Wallis (K-W) test P values
arereported. STS, short-term survivor; MTS, moderate-term survivor; LTS,
long-term survivor; mut/Mb, mutations per megabase. f, Forest plot indicates the
HR (squares) and 95% CI (whiskers) for progression-free and OS (n =126 patients)
calculated using a univariate Cox proportional hazard regression model based

on genomic features as indicated; Pvalues < 0.05 are colored red (*P < 0.05,

**P < 0.01) and were not adjusted for multiple comparisons.

Extended Data Fig. 7a; Supplementary Data 4). Tumors in long-term
survivors had an increased expression of cell proliferation-related
genes PCNA and MKI67 (Extended Data Fig. 7b), indicating that tumor
cells in long-term survivors may have exceptionally deregulated cell
cycle progression and increased proliferation. This is consistent with
our previous finding that Ki-67-positivity of tumor cell nuclei,amarker
of proliferation, is significantly higher in patients with prolonged
progression-free survival and OS*.

We used an established deconvolution method® to estimate the
abundance of immune cell types from bulk RNA-seq data (Supple-
mentary Tables 11, 12). CIBERSORTx absolute scores correlated with
CDS8" T cell density, bothin the tumor epithelium (P < 0.0001) and the

stromal compartment (P=0.0002), whichwere previously quantified
by immunohistochemistry® in a subset of primary tumors (n=54;
Supplementary Note). Scores of the most prominent cell populations
(detectedin >5% of samples) were treated as a continuous variable and
correlated with survival. Activated memory CD4 T cells (HR: 0.44, 95%
Cl:0.23-0.85, P=0.0144) and plasma cells (HR: 0.68, 95% CI: 0.49-0.95,
P=0.0249) were associated with improved OS, whereas resting mast
cells (HR:1.44,95% Cl:1.15-1.78, P= 0.0013) and M2 macrophages (HR:
1.46, 95% CI:1.09-1.96, P= 0.0119) were associated with an increased
risk of death (Extended Data Fig. 7c).

Unsupervised clustering of primary tumor samples using the com-
putationally estimated immune cell densities identified five patient
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Fig. 5| Immune phenotypes of long-term survivors. a, Heatmap of scaled
abundance of immune cell types following consensus clustering based on
CIBERSORTx? estimated absolute abundance of immune cell types from bulk
RNA-seq data of each primary tumor (n =126). Fiveimmune clusters were
identified (IMM.1-IMM.5), and each patient (column) is annotated with survival
group (LTS, long-term survivor; MTS, moderate-term survivor; STS, short-
termsurvivor), status at last follow-up (D, dead; P, progressed and alive; PF,
progression-free and alive), residual disease size and age at diagnosis (quartiles).

Years of follow-up

CIBERSORTXx absolute (abs) immune scores, tumor purity, neoantigen counts,
structural variant (SV) counts and ploidy estimates are shown as quartiles. Tumor
samples are also classified according to molecular subtype' (C1, mesenchymal;
C2,immunoreactive; C4, differentiated; C5, proliferative). b,c, Kaplan-Meier
analysis of progression-free survival (b) and OS (c) in patients stratified by
immune clusters. Pvalues were calculated by Mantel-Cox log-rank test, and
dotted linesindicate median survival.

groups associated with differential survival outcomes (IMM.1-5;
Fig. 5). Patients in cluster IMM.3 (n = 22) had the longest progression-
free survival (median 6.3 years, P <0.0001) and OS (median15.0 years,
P<0.0001), with tumor samples enriched for plasma cells, activated
memory CD4 T cells, M1 macrophages and resting natural killer (NK)
cells (P,4;<0.0001; Extended Data Fig. 8a). Cluster IMM.1 patients
(n=32) had the second longest OS (median 10.5 years) and were par-
ticularly enriched for CD8 T cells, activated NK cells, regulatory T cells
andfollicular helper T cells (P,4; < 0.0001). Tumor genomes in clusters
IMM.1and IMM.3 had the highest and second highest neoantigen bur-
den respectively (P,4;=0.0007; Extended Data Fig. 8b). By contrast,
samples from cluster IMM.2 (n = 23) have the lowest neoantigen bur-
den, the shortest OS (median1.7 years), and were enriched for resting
mast cells and dendritic cells (P,4; < 0.05). Concordantly, samples in
cluster IMM.2 were predominantly classified as the C1/mesenchymal
molecular subtype (78.3%, 18/23), whereas samples in clusters IMM.1
and IMM.3 were predominantly the C2/immunoreactive molecular
subtype (46.9% (15/32) and 54.5% (12/22) respectively; P,4; < 0.0001;

Extended Data Fig. 9a). Consistent with having an active immune
response, IMM.1and IMM.3 tumors had higher densities of CD8" T cells
in the tumor epithelium compared to other clusters (P, =0.0281;
Extended Data Fig. 8b).
Although the two long-term survivalimmune clusters IMM.1and
IMM.3 were characterized by elevated HRD scores (scarHRD mean,
P,4;=0.0439; BRCA2-type CHORD, P,4;=0.0859; Extended Data
Fig.8b), no particular DNA repair gene alteration was associated with
the immune clusters (Extended Data Fig. 9b). In a subgroup analysis,
differences in immune cell composition were observed between the
BRCAI-altered mutational signature clusters: the most notable being
elevated expression of the activated NK cell signature in clusters SIG.6
andSIG.7 compared to SIG.5 (SIG.5 versus SIG.6 P, = 0.0760, SIG.5 ver-
susSIG.7 P,g; = 0.0580; Supplementary Note). Concordantly,immune
cluster IMM.1, which is enriched with the activated NK cell signature,
was the dominantimmune clusterin both SIG.6 (44.4%,4/9) and SIG.7
(43.8%, 7/16) and the least abundant immune cluster in SIG.5 tumors
(13.6%,3/22; P=0.4688; Fig. 6a and Supplementary Note).
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Fig. 6 | Key features associated with exceptional survivalin HGSC. a, Spine
plots showing the proportion of samples shared between the mutational
signature clusters (left) and the immune clusters (right), with the number

of overlapping samplesindicated inside the colored bars. Also shown is the
proportion of survival groups (STS, short-term survivor; MTS, moderate-term
survivor; LTS, long-term survivor) in each cluster. Each of the two types of
clustersis ordered horizontally and vertically by the overall proportion of LTS.
The height of the bars indicates the number of samplesin the cluster. b, Forest
plotillustrates the HR (squares) and 95% CI (whiskers) for OS calculated using

aunivariate Cox proportional hazard regression model based on selected
features; results were not adjusted for multiple comparisons (*P < 0.05,**P< 0.01,
***P<0.001, ***P<0.0001). Features are sorted top to bottom by smallest to
largest HR and Pvalues less than 0.05 in multivariable model are colored red.
Complete univariable and multivariable results, including feature associations
with progression-free survival, are provided in Supplementary Tables 13,14. Ref
indicates the reference used for categorical features, and nindicates the number
of samplesin the categorical group.

Predictors of long-term survival

We considered the key features identified in this study, finding seven
were individually associated with OS (Fig. 6b and Supplementary Table
13; univariable Cox regression model), including the number of DNA
repair gene alterations (three or more HR: 0.39, 95% CI: 0.20-0.75,
P=0.0054), activated CD4 memory T cells (HR: 0.47,95% CI: 0.31-0.72,
P=0.0004), BRCA2-type HRD (HR: 0.48,95% Cl: 0.27-0.86, P= 0.0144),
PCNA expression (HR: 0.51,95% CI: 0.40-0.65, P< 0.0001), plasma cells
(HR:0.60,95%CI: 0.44-0.82, P= 0.0015), neoantigen count (HR: 0.71,
95% Cl: 0.56-0.91, P=0.0069) and residual disease (HR: 2.38, 95% CI:
1.09-5.17, P=0.0290). When combined in a multivariable regression
model, four features were statistically associated with OS, includ-
ing HRD type (BRCA2-type HR: 0.33, 95% CI: 0.17-0.66, P= 0.0018;
BRCAI-type HR: 0.45,95% CI: 0.25-0.82, P= 0.0086), PCNA expression
(HR:0.50,95% Cl:0.38-0.67,P < 0.0001), plasmacells (HR: 0.54, 95% CI:

0.37-0.78,P=0.0011) and residual disease (HR:3.15,95% CI:1.37-7.21,
P=0.0067; Supplementary Table 14).

Discussion

Cancer studies have focused on the determinants of treatment failure
(thatis, primary and acquired drug therapy resistance), with com-
parativelylittle attention on those patients who exceed expectations,
despite their potential to provide therapeutic insights*****, By access-
ing samples and data from studies that collectively include over 3,800
patients with HGSC, we were able to perform whole-genome charac-
terization of HGSC in 60 exceptional survivors.

Conceivably, exceptional survival in HGSC may be determined
byadominantrare event or by the interaction of multiple factors that
areindividually commonbut due to chance are infrequent in combina-
tion. Our finding of the association of survival with a variety of factors
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involving the patient’s genome, tumor somatic mutational profile,
and immune response strongly supports the latter explanation and
is consistent with a diversity of molecular and clinical pathways to
long-termsurvival in HGSC**°,

Syntheticlethality induced by PARPi ona BRCA altered background
provides a potent example of the clinical effect of simultaneously
targeting DNA repair processes®. In a genetic parallel, we found that
co-occurring alterations in DNA repair pathway genes are associated
with long-term survival. In some instances, this was associated with
evidence of both BRCAI-type and BRCA2-type HRD within atumor, often
duetostructural variants that inactivate homologous recombination
pathway genes. Indeed, inactivation of homologous recombination
pathway genes by structural variants isa common and perhaps unap-
preciated source of HRD in HGSC"***, It is plausible that multiple
genetic defects in DNA repair may render tumor cells exceptionally
sensitive to chemotherapy, as recently reported in an exceptional
responder with metastatic breast cancer**, or perhaps impede the
development of resistance.

We previously reported®, and validated here, how co-occurrence
of RBI and BRCAI or BRCA2 loss-of-function mutations is associated
with long-term survival. Interestingly, RB1 has anon-canonical function
in homologous recombination DNA repair*® in addition to cell cycle
regulation. Our comparison of primary and relapse tumor samples
in a small number of patients provided additional evidence for a key
role of co-occurring RBI and BRCAI mutations in exceptional response
and good outcome.

One of the strongest associations with long-term survival were
markers of enhanced proliferation. While enhanced proliferation
is generally associated with aggressive cancer phenotypes, faster
replication may also render cells more susceptible to chemotherapy.
Higher proliferative countsinlong-termsurvivors could alsorelate to
areduced ability of the cells to enter a quiescent state, which hasbeen
associated with the development of treatment resistance in lung* and
ovarian cancer®. A subset of long-term survivors had CCNEI amplifi-
cation and evidence of enhanced immune activity, suggesting thatan
engaged tumor-immune microenvironment can overcome the poor
primary treatment response typically associated with CCNE1 amplifica-
tion and homologous recombination proficiency.

The determinants of long-term survivalin HGSC are complex, and
progress will depend on detailed discovery studies* and validation
of specific findings in large, clinically annotated patient cohorts with
long follow-up®. Refining comparisons* will also be key, as exempli-
fied by the three subsets of patients, allwith BRCAI mutations but with
distinctly different survival outcomes. Clusters SIG.5 and MET.1lidentify
asubgroup of more aggressive BRCAI-driven tumors associated with
ayounger age of onset, whose unique genomic signature associated
with tobacco or alcohol exposure, relatively lower NK cell infiltration
and/or less frequent compounded HRD may drive a diminution in
survival. A recent study found that cigarette smoking is associated
with worse survival among women with germline BRCA1/2 mutations
compared tononcarriers®. Furthermore, alarge cohortstudy of asymp-
tomatic individuals found that NK cell activity decreases in smokers
in a dose-dependent manner®, indicating a plausible link between
smoking-associated NK cell deficit and an elevated risk of malignancy,
particularly in BRCAI mutation carriers. Collectively our molecular
data support the observation that survival outcomes in women with
BRCAI-altered HGSC may be influenced by prior mutagen exposure, a
potentially modifiable risk factor.

We have identified distinct HGSC subgroups separated by muta-
tional processes, DNA methylation and immune response, and found
that differential outcomes may be associated with compounding
lifestyle-related exposures, surgical outcomes, anti-tumor immune
activity, cell cycle deregulation and/or disruption of multiple DNA
repair pathways. Although most of our patients predate the introduc-
tion of PARPi, given that response to platinum is predictive of PARPi

sensitivity'’, our findings may also provide insights into long-term
PARPiresponse.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-022-01230-9.
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Methods

Study participants and patient samples

This project was conducted with approval from the Peter MacCallum
Cancer Centre Human Research Ethics Committee, the Western Sydney
Local Health District Human Research Ethics Committee and the Mayo
Clinic Institutional Review Board. The study population consisted of
women diagnosed with epithelial ovarian cancer between 1980 and
2019, enrolled in the Australian Ovarian Cancer Study (AOCS), the
Gynaecological Oncology Biobank at Westmead Hospital (Sydney) and
the Mayo Clinic. Participationin these studies was voluntary (patients
were not compensated), and written informed consent was provided
by all participants. Women with histologically confirmed high-grade
serous ovarian carcinoma and survival time available (n = 3,824) were
considered for the study.

Inclusion criteria. Cases were selected as follows: (i) histologically
confirmed high-grade (grade 2 or 3) serous ovarian, fallopian or peri-
toneal carcinoma; (ii) International Federation of Gynecology and
Obstetrics stage IlIC or IV disease; (iii) primary treatment incorporat-
ing a platinum-based agent; (iv) fresh-frozen tumor obtained during
primary debulking surgery and matched blood samples available or
previously analyzed™. Survival categories were defined as follows:
(i) short-term survivors had died less than 2 years from diagnosis,
(ii) moderate-termsurvivors had survived at least 2 years since diagno-
sisbut died before 10 years and (iii) long-term survivors had an OS of at
least 10 years after diagnosis (Extended DataFig. 1a). This definition of
long-term survival is consistent with previous studies****. To confirm
high-grade serous carcinoma, all eligible cases underwent pathology
review as previously described®.

Clinical definitions. Progression-free survival was defined as the time
between histological diagnosis and disease progression, as deter-
mined by imaging or CA125 serum levels according to the Gyneco-
logical Cancer Intergroup criteria, or death. OS was defined as the
time interval between histological diagnosis and death (all causes) or
date of last follow-up. Never-smokers were those participants who had
self-reported never smoking (or having smoked less than100 cigarettes
intheir lifetime) before diagnosis.

Cohorts. Sequencing of 73 patients was previously described"
(7 long-termsurvivors, 34 short-term survivors and 32 moderate-term
survivors) as part of the International Cancer Genome Consortium
(ICGC) Ovarian Cancer project. Additional sequencing of samples from
53 long-term survivors was performed here as part of the Multidisci-
plinary Ovarian Cancer Outcomes Group (MOCOG) study. Genomic
data from the ICGC and MOCOG cohorts were uniformly processed
and analyzed for the current study. The analysis cohort consisted of
126 female patients with HGSC (Extended Data Fig. 1a), diagnosed
between the ages of 29 and 81 years (Extended Data Fig. 1b and Sup-
plementary Table1).

Biospecimens. Normal DNA wasisolated from peripheral lymphocytes
orlymphoblastoid cell lines using the salting out method, the QlAamp
DNA Blood Mini Kit (QIAGEN) or the FlexiGene DNA Kit (QIAGEN)
using the AutoGen FlexSTAR+ instrument according to the manu-
facturer’s instructions. Tumor DNA was extracted from fresh frozen
cryosectioned tumor tissue using either the DNeasy Blood & Tissue Kit
(QIAGEN), the AlIPrep DNA/RNA/miRNA Universal Kit (QIAGEN) or the
Gentra PuregeneKit (QIAGEN) according to the manufacturer’sinstruc-
tions. Tumor RNA was extracted from freshfrozen cryosectioned tumor
tissue using the mirvVana miRNA Isolation Kit (Ambion/Life Technolo-
gies), the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN) or the RNe-
asy MiniKit (QIAGEN) using the QIAcube automated system according
tothe manufacturer’sinstructions. DNA was quantified using the Qubit
dsDNA BR Assay (Invitrogen), the Lunatic spectrometer (Unchained

Labs) and the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen). RNA
quality and quantity were assessed using the Bioanalyzer RNA 6000
Nano assay (Agilent) and the NanoDrop Spectrophotometer (Thermo
Fisher Scientific).

Molecular assays

Single-nucleotide polymorphism (SNP) arrays and quality con-
trol. Tumor and matched normal DNA was assayed with the Infinium
OmniExpress-24 BeadChip arrays, arrays scanned and data processed
using Genotyping module 2.0.3 software in GenomeStudio 2.0.3 to cal-
culatelogR ratios and B-allele frequencies according to manufacturer’s
instructions (Illumina) at the Australian Genome Research Facility
(AGRF; Melbourne, Australia). HYSYS> was used to confirm correspond-
ence of normal and tumor DNA, and tumor cellularity was assessed
using qPure® and ASCATY, based on B-allele frequencies for -67k com-
mon probes between HumanOmni2.5-8vl_A, HumanOmni25M-8v1-1 B,
InfiniumOmniExpress-24v1-2_Al and InfiniumOmniExpress-24v1-3_Al
SNP array platforms. Tumor DNA samples with estimated tumor cel-
lularity >40% proceeded to WGS and methylation arrays. B-allele fre-
quencies were also used to visually inspect profiles across tumor and
germline samples.

Methylation arrays. Quality assessment was performed by QuantiFluor
(Promega) and 500 ng tumor DNA was bisulfite converted with the EZ
DNA Methylation kit (Zymo Research) and assayed using the Infinium
MethylationEPIC BeadChip arrays according to manufacturer’sinstruc-
tions (Illumina) at the AGRF.

WGS. Sequence libraries were generated from tumor and matched
normal genomic DNA using the KAPA HyperPrep PCR-free library
preparation kit (Roche) according to manufacturer’s instructions.
Sequencing was carried out by the Kinghorn Centre for Clinical Genom-
ics Sequencing Laboratory (Sydney, Australia) on the HiSeq X Ten
System (Illumina) to a minimum base coverage of 30-fold for normal
DNA and 60-fold for tumor DNA samples.

RNA-seq. Quality assessment was performed using the Bioanalyzer
RNA 6000 Nano assay (Agilent), finding a median RNA integrity
number of 9.0 (range 4.7 to 10). Libraries were generated using Illu-
mina Stranded mRNA Prep and 150-bp paired-end sequencing was
performed to a minimum of 100 million reads on Illumina NovaSeq
6000 instruments at the AGRF inaccordance with the manufacturer’s
instructions.

Processing of whole-genome sequence data

FASTQ files were assessed for sequencing quality using FASTQC
(v0.11.8) and for contaminants using FastQ Screen®® (v0.11.4). The
fileswere trimmed of adapters, low-quality bases and N content using
fastq-mcf from ea-utils (v1.05). Sequence data were mapped to the
human genome reference GRCh37b37 using BWA mem™ (v0.7.17-r1188),
producing BAM files. BAM files were then sorted, lanes merged and
duplicates marked using Picard Tools (v2.17.3). Bases were recalibrated
using GATK®° BaseRecalibrator (v4.0.10.1). Coverage was calculated
using GATK DepthOfCoverage (v3.8-1-0-gf15clc3ef), and metrics such
as insert size distribution, OxoG, base quality, GC bias and quality
distribution were generated using Picard Tools (v2.17.3). GATK Haplo-
typeCaller (v4.0.10.1) was used on germline BAMs to generate Genomic
Variant Call Format files, which were used as the ‘Panel of Normal’ for
Mutect2 variant calling. Tumor purity and ploidy was estimated using
FACETS® (v0.6.1).

Variant detection

Germline variant calling. Germline base substitution and INDEL vari-
antswere called using VarDictJava (v1.5.7 with-r=2-Q =10 -f = 0.1) for
genes of interest (Supplementary Table 5).
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Somatic base substitution and INDEL calling. Four variant calling
tools were used to call somatic base substitutions and INDELs, as fol-
lows: Mutect2 (ref. ©°) (v4.0.11.0 with defaults), VarDictJava® (v1.5.7 with
-r=2-Q=10-V=0.05-f=0.01), Strelka2 (ref. ©) (v2.9.9 with defaults),
and VarScanz2 (ref. ¢*) (SAMtools® v1.9 for mpileup and VarScan2
v2.4.3 with-min-coverage 7-min-var-freq 0.05-min-freq-for-hom
0.75-p-value 0.99-somatic-p-value 0.05-strand-filter 0). Vari-
ant calls from all four tools were then decomposed (that is, multi-
allelic to biallelic) and normalized (that is, left trimmed) using vt
(v0.57721). The passing variants for each caller were then processed
using GATK ReadBackPhasing (v3.8-1-0-gf15c1c3ef with-phase-
QualityThresh 10-enableMergePhasedSegregatingPolymorphism-
sTOMNP-min_base_quality_score 10-min_mapping_quality_score
10-maxGenomicDistanceForMNP 2). The main purpose of running
this tool was to combine contiguous SNVs to multinucleotide vari-
ants (for example, a DBS). The variant call format (VCF) files per caller
were then merged using GATK CombineVariants (v3.8-1-0-gf15c1c3ef
with -genotypeMergeOptions UNIQUIFY -priority Strelka2, Mutect2,
VarScan2, VarDictJava). The combined VCF was split and left trimmed
using vt. Any variants that failed all callers were excluded. The VCF was
annotated for homopolymers and tandem repeats using GATK Varian-
tAnnotator (v3.8-1-0-gf15c1c3ef with-reference_window_stop1000-A
HomopolymerRun-A TandemRepeatAnnotator). High-confidence vari-
antswere those that passed atleast two callers, had at least one variant
containingreadineachstrand, were notin the Duke and DACblacklisted
regions and were not in the list of FrequentLy mutAted GeneS (FLAGS?).

Structural variant detection. Four callers were used to identify
somatic structural variants: Manta®+ BreakPointInspector (v1.5.0),
GRIDSS®’ (v2.0.1), Smoove (v0.2.2) and SVABA™ (v134). Structural
variant calls were separated into germline and somatic VCFs. For each
germline/somatic VCF from the four callers, acustom R script used the
StructuralVariantAnnotation and rtracklayer” libraries to merge the
SVs and generate a combined VCF from the four callers. A value of 10
was used for the maxgap parameter along with the strand orientation
ofthe method findBreakpointOverlaps toidentify commonstructural
variants across the callers. Structural variants were annotated as dupli-
cation, deletion, inversion or translocation using a simple event type
classifier provided by the GRIDSS package. Breakpoints called by at
least two callers were deemed high confidence.

CNV detection. SNP pileup frequencies on common SNPs (dbSNP build
151, reference = GRCh37.p13, N = 37,906,831) were generated for tumor
and normal BAMs. Pileups were generated using the snp-pileup tool
(with-pseudo-snps 100-min-map-quality 10-min-base-quality 10-
max-depth 5000-min-read-counts15,0) as provided by the developers
of FACETS® (v0.6.1). The pileups were then used for cnv_facets (v0.13.0),
whichisaconvenience tool for FACETS that executes all necessary steps
togenerate a VCF from the BAMs. Various values of pre-processing and
processing cvals along with nbhd-snp were used for the analysis. The
settings with the most robust CNV calls and purity agreement with
the SNP array data were used for further analysis. The settings used
for FACETS were (-nbhd-snp=500-cval=50 1000-depth=155000).

Whole-genome duplication and whole-genome loss. Whole-genome
duplication percentages were assessed using previously established
methods™. Briefly, the percentage genome with a major copy number
(MCN) of greater than or equal to two was calculated. The same method
was applied to assess whole-genome loss, where percentage genome
with a total copy number of less than or equal to one was calculated.

Annotation of variants in genes of interest

High-confidence base substitutions and INDELs were filtered to remove
(1) variants with less than four supporting reads and/or variants with-
out bidirectional read support, (2) all silent (synonymous) mutations

with no prior evidence of being pathogenic, (3) common variants
with a global minor allele frequency > 0.001in the Genome Aggrega-
tion Databse (gnomAD) v2.1.1 (https://gnomad.broadinstitute.org/)
and (4) variants previously found to be benign or low clinical signifi-
canceinone or more mutation databases (https://www.ncbi.nlm.nih.
gov/clinvar/, https://brcaexchange.org/). Structural variants that
were detected within a gene footprint were considered truncating if
the variant was (1) a translocation that breaks the gene anywhere
between the translation start site and the first base of the final coding
exon, (2) adeletion, duplication, or inversion that spans one or more
exons (unless it only spans the final coding exon) or (3) a deletion,
duplication or inversion that results in a frameshift within an exon
(unlessitis within the final coding exon). CNVs were considered patho-
genicif (1) aregion of homozygous deletion (gene level copy number=0)
spans the whole gene or a coding exon (unless it only spans the
final coding exon), or (2) a region of amplification (gene level copy
number >7) spans the whole gene.

Evidence of mutation was sought from both WGS and RNA-seq
data, and manual review of germline and somatic variants in genes of
interest was carried out using Integrative Genomics Viewer’>, Manually
curated genes and pathogenic variants with supporting evidence are
listed in Supplementary Tables 5-7. Mutations reported in Supplemen-
tary Tables 5-7 were only those deemed pathogenic, thatis truncating
mutations (nonsense, splice site, frameshift, deletions, duplications,
inversions and translocations that disrupt the coding transcript) and
missense variants previously reported as pathogenic or likely patho-
genicin curated mutation databases (https://tp53.isb-cgc.org/, https://
www.ncbi.nlm.nih.gov/clinvar/, https://brcaexchange.org/)

Homologous recombination pathway analysis

In addition to pathogenic germline and somatic mutations in genes
involved with homologous recombination and DNA repair (Supple-
mentary Tables 5and 6), the promoter methylation status of BRCAI and
RADSICwas determined in tumor samples using methylation array data
and gene expression (Supplementary Methods). Tumor samples with
multiple potential driver gene alterations were assigned to a primary
alteration category in the following order of preference: (1) germline
mutation in homologous recombination gene (BRCA1, BRCA2, BRIP1,
PALB2, RADSIC, or RADS1D), (2) somatic promoter methylation of
BRCAI or RADSIC, (3) somatic mutation in homologous recombination
gene (BRCA1, BRCA2, BRIP1, PALB2, RADSIC, or RADS51D), (4) somatic
CDK12 mutation, (5) somatic CCNEI amplification, (6) somatic muta-
tionin putative homologous recombination gene (BARDI1, BLM, CHEK2,
FANCA, FANCD2, FANCE, FANCI, FANCM, PTEN, ATM, ATR, or RAD51B),
(7) somatic mutation in mismatch repair gene (MSH2, MSH6, PMS1, or
PMS2), (8) wild-type (no germline or somatic homologous recombina-
tion alteration, CDK12 mutation, CCNEI amplification, or mismatch
repair mutation). Where multiple potential driver mutations were
identified, the variant allele frequency and/or mutational signatures
were used to assign the likely driver.

Multiple DNA repair pathway alterations. To determine the num-
ber of DNA repair alterations per sample, all independent germline
and somatic alterations were tallied in the following gene sets:
(1) homologous recombination pathway genes, (2) putative homolo-
gous recombination pathway genes, (3) mismatch repair genes and
(4) CDK12and RBI.

Homologous recombination deficiency. Homologous recombi-
nation deficiency was estimated in tumor samples using CHORD?
and scarHRD™.

Mutational signatures
Mutational signatures were generated for high-confidence variants as
described above. Variants for eachsample were converted into catalogs
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or categories of mutational spectra for SBSs, DBSs and INDELs using
the R package ICAMS v2.0.10.9001 (https://github.com/steverozen/
ICAMS) and the function ‘VCFsToCatalogs’. Each type of mutational cat-
alog contains anumber of contexts based on the COSMIC definitions®,
namely 96 contexts for SBSs, 78 contexts for DBSs and 84 contexts for
INDELSs. This provides a sample by mutation context matrix per SBS,
DBS and INDEL type. Structural variant signature catalogs consisting
of 32 contexts were generated using the R package signature.tools.
lib** (v0.0.0.9000) and the function ‘bedpeToRearrCatalogue’. The
SBS, DBS and INDEL catalogs were then fit to the COSMIC Mutational
Signatures v3.2database (https://cancer.sanger.ac.uk/signatures/),and
the structural variant catalogs were fit to the ovary-specific rearrange-
ment signatures (https://signal.mutationalsignatures.com/). Further
details on mutational signature fitting and clustering are described in
the Supplementary Methods.

Neoantigen prediction

HLA types were generated using HLA-VBSeq” (v11_22 2018) for neo-
antigen prediction as follows. Unmapped reads and reads mapped to
HLAregions were extracted usingjvarkit samviewwithmate (ec2c236)
and converted to FASTQ files using samtools view (v1.9) along with
Picard Tools SamToFastq (v2.17.3); these were then mapped using
BWA mem (v0.7.17-r1188) to the HLA v2 database based on IMGT/HLA
Database’ release 3.31.0 and Japanese HLA reference dataset for HLA
estimation. The HLA types were fed into pVACtools”” pVACseq (v1.3.5)
toidentify and construct neoantigens from the high-confidence vari-
ants. Briefly, high-confidence coding variants in VCF format were
annotated using the VEP (v92.4) plugin ‘Downstream’, which pro-
vides the predicted downstream protein sequence and the change
in length relative to the reference protein, and the plugin ‘Wildtype’,
which includes the transcript protein sequence in the annotation.
RNA read counts for the annotated variants were generated using
bam_readcount_helper.py and added to the VCF using vatools
vcf-readcount-annotator. Normalized transcripts per million were
added using vatools vcf-expression-annotator. Finally, pVACseq was
run against this final annotated VCF for both MHC Class I and MHC
Class Il predictions.

RNA-seq data processing and quality control
Initial quality control checks on raw FASTQ files were performed using
FastQC (v0.11.8). Reads were trimmed for low quality, adapters, N
content and poly(A) tails using fastq-mcf (v1.05), and contamination
assessed using FastQ Screen (v0.11.4). Reads were mapped to thehuman
reference GRCh37.92 using the STAR”® two pass method (v2.6.0b).
Mapped reads were sorted using Picard Tools (v2.17.3). Additional
quality control after mapping was performed using Picard Tools
CollectRnaSeqMetrics (v2.17.3) and RSeQC”’ (v2.6.4). Counts were
generated on the Ensembl release GRCh37.92 gene annotation using
HTSeq® (v0.10.0). Counts were generated on the exons only using the
‘intersection-nonempty’ mode.

Raw counts datawere filtered to onlyinclude protein coding genes.
To remove lowly expressed genes, the data were converted to CPM
(counts per million = number of reads mapped to a gene x 10%/total
number of mapped reads), and only genes where at least 10 samples
hadaCPMofgreater than 0.5 were kept for further processing. The data
were normalized using the trimmed mean of M values (TMM) method
in edgeR® and batch effects removed using the removeBatchEffect
function of limma®2. Further details on batch correctionand expression
analyses are provided in the Supplementary Methods.

Methylation data processing and quality control

Methylation data quality control assessment and processing were
performed using the R package minfi** (v1.32.0). Probes failing detec-
tion (P> 0.01), SNP positions and cross-reactive probes (as collected
inhttps://github.com/sirselim/illumina450k filtering) were excluded.

Data were normalized using the minfi function ‘preprocessFunnorm’
(Functional normalization as described previously®*), and beta val-
ues were generated. Probes were annotated to the Ensembl release
GRCh37.92 gene transfer format annotation. Beta values for samples
from EPIC and 450k arrays were combined to contain shared probes
and batch corrected using the ‘ComBat’ function in the R package
sva® (v3.34.0).

Statistical analyses

Differences in proportions of categorical variables between groups
were assessed by the chi-square or Fisher’s exact test as appropriate.
Continuous variables were evaluated using either a Kruskal-Wallis
test or a Mann-Whitney test. The Kaplan-Meier methodology was
applied to estimate and plot progression-free and OS probabilities
and the corresponding time to event were compared between groups
using the log-rank (Mantel-Cox) test. For display purposes, the x axis
inKaplan-Meier plots is capped at 15 years. Outcomes were assessed
using univariable and multivariable Cox proportional hazards models,
for continuous and categorical features, using the ‘coxph’ function
of the R package survival (v3.2-7) with default parameters. Continu-
ous variables were scaled and centered across the cohort using the
R function ‘scale’. Correlations between continuous variables were
assessed by Spearman correlation. All statistical tests were two sided
and considered significant when P < 0.05. The Benjamini-Hochberg
procedure was applied to correct Pvalues for the impact of multiple
testing, with false discovery rate-adjusted P values denoted by P,4. R
(v3.6.3) and Prism (v9.2.0) were used for statistical analyses.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

ICGC datasets: Previously published WGS and RNA-seq data gener-
ated as part of the ICGC Ovarian Cancer project' are available from
the European Genome-phenome Archive (EGA) repository (https://
ega-archive.org) as a single BAM file for each sample type (tumor/
normal) under the accession code EGADO0001000877. Due to the
sensitive nature of these patient datasets, access is subject to approval
from the ICGC Data Access Compliance Office (https://docs.icgc.org/
download/data-access/), an independent body who authorizes con-
trolled access to ICGC sequencing data. ICGC SNP array and methyla-
tiondatasets have been deposited into the Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession code
GSE65821, without access restrictions. ICGC gene count level tran-
scriptomic data have been deposited into the GEO under accession
code GSE209964.

MOCOG datasets: WGS, RNA-seq and SNP array datafrom long-term
survivors generated as part of the MOCOG study have been deposited
inthe EGArepository under accessioncode EGAS00001005984. WGS
and RNA-seq dataare available as raw FASTQfiles for each sample type
(tumor/normal) and SNP array dataare available as raw signal intensity
files in text format for each sample type (tumor/normal). Access to
patient sequence data can be gained for academic use through appli-
cation to the independent Data Access Committee (dac@petermac.
org). Responses to data requests will be provided within two weeks.
Information on how to apply for access is available at the EGA under
accessioncode EGAS00001005984. The MOCOG cohortraw methyla-
tion data sets have been submitted to the GEO under accession code
GSE211687, with no access restrictions.

Uniformly processed somatic variant data from the ICGC and
MOCOG cohorts have been deposited in Synapse under accession
code syn34616347, and processed expression and methylation data
fromboth cohorts have been submitted into the GEO under accession
code GSE211687, without access restrictions.
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Population frequencies of genetic variants can be accessed via the
Genome Aggregation Database (gnomAD) at https://gnomad.broa-
dinstitute.org/. Supporting evidence for pathogenicity of genomic
alterations canbe accessed via ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), BRCA Exchange (https://brcaexchange.org/) and the TP53
Database (https://tp53.isb-cgc.org/). The Ensembl ranked order of
severity of variant consequencesis available at: https://m.ensembl.org/
info/genome/variation/prediction/predicted_data.html. Precomputed
TCGA ovarian serous cystadenocarcinoma survival analysis data can
be downloaded from OncoLnc (http://www.oncolnc.org/). Mutational
signature reference databases can be accessed via COSMIC (https://
cancer.sanger.ac.uk/signatures/) and Signal (https://signal.mutation-
alsignatures.com/). The LM22 signature matrix used for immune cell
deconvolution canbe downloaded at https://cibersortx.stanford.edu/.
The COSMIC Cancer Gene Census can be accessed at https://cancer.
sanger.ac.uk/census. MSigDB hallmark gene sets can be accessed at
https://www.gsea-msigdb.org/gsea/msigdb/. lllumina methylation
probes that were filtered out due to poor performance (for example,
cross-reactive or nonspecific probes) can be found at https://github.
com/sirselim/illumina450k_filtering. Germline polymorphic sites
for reference and variant allele read counts used in FACETS analysis
can be found at ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_
b151_GRCh37p13/VCF/common_all_20180423.vcf.gz. The gene transfer
format used for annotation and RNA-seq counts is available at ftp://
ftp.ensembl.org/pub/grch37/release-92/. All other data are available
within the article and its supplementary information files.

Code availability

No custom code or software was used in the data analyses. All results
can be replicated using publicly available tools and software. The
tools and versions used are fully described in the Methods and Sup-
plementary Information.

References

54. Cress, R.D., Chen, Y.S., Morris, C. R., Petersen, M. & Leiserowitz,
G. S. Characteristics of long-term survivors of epithelial ovarian
cancer. Obstet. Gynecol. 126, 491-497 (2015).

55. Schroder, J., Corbin, V. & Papenfuss, A. T. HYSYS: Have you
swapped your samples? Bioinformatics 33, 596-598 (2017).

56. Song, S. etal. gpure: A tool to estimate tumor cellularity from
genome-wide single-nucleotide polymorphism profiles. PLoS
One 7, 5-11(2012).

57. Van Loo, P. et al. Allele-specific copy number analysis of tumors.
Proc. Natl Acad. Sci. USA 107, 16910-16915 (2010).

58. Wingett, S. W. & Andrews, S. FastQ Screen: A tool for
multi-genome mapping and quality control. FIO0OORes. 7,

1338 (2018).

59. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

60. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome Res. 20, 1297-1303 (2010).

61. Shen, R. & Seshan, V. E. FACETS: Allele-specific copy number
and clonal heterogeneity analysis tool for high-throughput DNA
sequencing. Nucleic Acids Res. 44, 1-9 (2016).

62. Lai, Z. et al. VarDict: a novel and versatile variant caller for
next-generation sequencing in cancer research. Nucleic Acids
Res. 44, €108 (2016).

63. Kim, S. et al. Strelka2: fast and accurate calling of germline and
somatic variants. Nat. Methods 15, 591-594 (2018).

64. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy
number alteration discovery in cancer by exome sequencing.
Genome Res. 22, 568-576 (2012).

65. Danecek, P. et al. Twelve years of SAMtools and BCFtools.
Gigascience 10, 1-4 (2021).

66. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of
genetic variants. Bioinformatics 31, 2202-2204 (2015).

67. Shyr, C. et al. FLAGS, frequently mutated genes in public exomes.
BMC Med. Genomics 7, 64 (2014).

68. Chen, X. et al. Manta: Rapid detection of structural variants
and indels for germline and cancer sequencing applications.
Bioinformatics 32, 1220-1222 (2016).

69. Cameron, D. L. et al. GRIDSS: Sensitive and specific genomic
rearrangement detection using positional de Bruijn graph
assembly. Genome Res. 27, 2050-2060 (2017).

70. Wala, J. A. et al. SYABA: Genome-wide detection of structural
variants and indels by local assembly. Genome Res. 28,
581-591(2018).

71. Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: An R
package for interfacing with genome browsers. Bioinformatics 25,
1841-1842 (2009).

72. Bielski, C. M. et al. Genome doubling shapes the evolution and
prognosis of advanced cancers. Nat. Genet. 50, 1189-1195 (2018).

73. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol.
29, 24-26 (2011).

74. Sztupinszki, Z. et al. Migrating the SNP array-based homologous
recombination deficiency measures to next generation
sequencing data of breast cancer. NPJ Breast Cancer 4,16 (2018).

75. Nariai, N. et al. HLA-VBSeq: Accurate HLA typing at full resolution
from whole-genome sequencing data. BMC Genomics 16,

1-6 (2015).

76. Robinson, J. et al. IPD-IMGT/HLA Database. Nucleic Acids Res. 48,
D948-D955 (2020).

77. Hundal, J. et al. PVACtools: A computational toolkit to identify
and visualize cancer neoantigens. Cancer Inmunol. Res. 8,
409-420 (2020).

78. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15-21(2013).

79. Wang, L., Wang, S. & Li, W. RSeQC: Quality control of RNA-seq
experiments. Bioinformatics 28, 2184-2185 (2012).

80. Anders, S., Pyl, P. T. & Huber, W. HTSeqg-A Python framework to
work with high-throughput sequencing data. Bioinformatics 31,
166-169 (2015).

81. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A
Bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics 26, 139-140 (2009).

82. Ritchie, M. E. et al. Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43, e47 (2015).

83. Aryee, M. J. et al. Minfi: a flexible and comprehensive
Bioconductor package for the analysis of Infinium DNA
methylation microarrays. Bioinformatics 30, 1363-1369 (2014).

84. Fortin, J.-P. et al. Functional normalization of 450k methylation
array data improves replication in large cancer studies. Genome
Biol. 15, 503 (2014).

85. Leek, J. T, Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D.
The sva package for removing batch effects and other unwanted
variation in high-throughput experiments. Bioinformatics 28,
882-883 (2012).

Acknowledgements

We thank P. Webb, K. Byth, R. Lupat, J. Ellul and the Peter MacCallum
Cancer Centre Research Computing Facility for their contributions
to the study. This work was supported by the U.S. Army Medical
Research and Materiel Command Ovarian Cancer Research
Program (Award No. W81XWH-16-2-0010 and W81XWH-21-1-0401),
the National Health and Medical Research Council of Australia
(1092856, 1117044 and 2008781 to D.D.L.B., and 1186505 to

D.W.G.), and the U.S. National Cancer Institute (PB0OCA046592

for C.L.P. and P3OCA008748 for M.C.P.). This research was made

Nature Genetics


http://www.nature.com/naturegenetics
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://brcaexchange.org/
https://tp53.isb-cgc.org/
https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html
http://www.oncolnc.org/
https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://signal.mutationalsignatures.com/
https://signal.mutationalsignatures.com/
https://cibersortx.stanford.edu/
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/sirselim/illumina450k_filtering
https://github.com/sirselim/illumina450k_filtering
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/common_all_20180423.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/common_all_20180423.vcf.gz
ftp://ftp.ensembl.org/pub/grch37/release-92/
ftp://ftp.ensembl.org/pub/grch37/release-92/

Article

https://doi.org/10.1038/s41588-022-01230-9

possible by generous support from the Border Ovarian Cancer
Awareness Group, the Garvan Research Foundation, the Graf Family
Foundation, Mrs Margaret Rose AM, Arthur Coombs and family,

and the Piers K Fowler Fund. The Australian Ovarian Cancer Study
(AOCS) gratefully acknowledges the cooperation of participating
institutions in Australia and the contribution of study nurses,
research assistants and all clinical and scientific collaborators.

The complete AOCS Group can be found at www.aocstudy.org.

We would like to thank all of the women who participated in the
study. AOCS was supported by the U.S. Army Medical Research

and Materiel Command (DAMD17-01-1-0729), The Cancer Council
Victoria, Queensland Cancer Fund, The Cancer Council New South
Wales, The Cancer Council South Australia, The Cancer Council
Tasmania, The Cancer Foundation of Western Australia and the
National Health and Medical Research Council of Australia (NHMRC;
ID199600, ID400413, ID400281). AOCS gratefully acknowledges
additional support from Ovarian Cancer Australia and the Peter
MacCallum Cancer Foundation. We thank all the women who
participated in the GynBiobank and gratefully acknowledge the
Departments of Gynaecological Oncology, Medical Oncology

and Anatomical Pathology at Westmead Hospital, Sydney. The
Gynaecological Oncology Biobank at Westmead was funded by the
NHMRC (ID310670, ID628903), the Cancer Institute NSW (12/RIG/1-
17, 15/RIG/1-16) and the Department of Gynaecological Oncology,
Westmead Hospital, and acknowledges financial support from

the Sydney West Translational Cancer Research Centre, funded

by the Cancer Institute NSW (15/TRC/1-01). E.L.C. was supported

by NHMRC grant APP1161198. F.A.M.S. was supported by a Swiss
National Foundation EarlyPostdoc Fellowship (P2BEP3-172246),
Swiss Cancer Research Foundation grant BIL KFS-3942-08-2016 and
a Professor Dr Max Cloétta and Uniscientia Foundation grant. A.M.P.
and J.D.B. were supported by Cancer Research UK (A22905). B.H.N.
was supported by the BC Cancer Foundation, Canada’s Networks
of Centres of Excellence (BioCanRx), Genome BC and the Canada
Foundation for Innovation. D.D.L.B. was supported by the U.S.
National Cancer Institute U54 program (U54CA209978).

Author contributions

DW.G., S.F., A.D. and D.D.L.B. conceived the project. C.J.K., K.A.,NT.,
G.A.-Y., A.B., M.F.,, P.R.H., O.M., E.L.G., A.D. and D.D.L.B. provided patient
samples and clinical information, and DW.G., J. Hendley, Y.C. and E.L.C.

prepared patient samples. DW.G., A.P.,, S.F., C.J.K.,K.A.,D.A,, L.B.,
JMC., J.Hung, B.M.,R.AV., CW.,, S.JW. and E.L.G. acquired data. A.P.
managed and processed genomic data and performed data analysis
together with DW.G,, S.F., KT, P.P, D.A.,E.L.C, B.M., FAIM.S.,RAV.,
CW.and S.JW.DW.G.,, S.F.,K.A., C.L.P., M.C.P. and D.D.L.B. coordinated
the study and interpreted the results along with A.P., KT., PT.H., N.\W.B.,
E.L.C., B.G., AM.P, F.AM.S., P.D.P.P, J.D.B., T.PC., G.L.M., S.J.R.,, B.H.N.
and A.D. DW.G., A.D. and D.D.L.B. supervised the work and wrote the
manuscript together with A.P. and KT. All authors discussed the results
and read the manuscript.

Competinginterests

S.F.,K.A., N.T. and A.D. received grant funding from AstraZeneca for
unrelated work. G.A.-Y. received grant funding from AstraZeneca and
Roche-Genentech for unrelated work. M.F. declares honoraria for
advisory boards AstraZeneca, GSK, Incyclix, Lilly, MSD, Novartis and
Takeda; consultancy for AstraZeneca, Eisai and Novartis; speaker’s fee
and travel from AstraZeneca; speaker’s fee from ACT Genomics; and
institutional research funding from AstraZeneca, BeiGene, Novartis;
all for unrelated work. J.D.B. received funding from Aprea and

Clovis Oncology for unrelated work. D.D.L.B. received funding from
AstraZeneca, Genentech-Roche and BeiGene for unrelated work. The
remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41588-022-01230-9.

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41588-022-01230-9.

Correspondence and requests for materials should be addressed to
Dale W. Garsed or David D. L. Bowtell.

Peer review information Nature Genetics thanks the anonymous
reviewers for their contribution to the peer review of this work.
Peer reviewer reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Genetics


http://www.nature.com/naturegenetics
http://www.aocstudy.org
https://doi.org/10.1038/s41588-022-01230-9
https://doi.org/10.1038/s41588-022-01230-9
http://www.nature.com/reprints

Article https://doi.org/10.1038/s41588-022-01230-9

a Patients: High-grade serous ovarian
cancer patients with advanced
stage (IlIC/IV) disease
N =126
v ! v
Short-term survivors Moderate-term survivors Long-term survivors
(OS <2 years) (OS 22 and <10 years) (OS 210 years)
n=34 n=32 n =60
Samples:
Germline 34 32 60
Primary tumors 34 32 60
Relapse tumors 5
b
Short-term survivors Moderate-term survivors Long-term survivors
(n =34) (n =32) (n =60)
Characteristics n (%) n (%) n (%) P
Age at diagnosis (years)
Median 60.5 57.0 60.0 0.2222°
Range 45-78 39-73 29-81
Primary site
Ovary 22 (65) 28 (88) 51 (85) 0.1010°
Peritoneum 11 (32) 3(9) 8 (13)
Fallopian tube 1@3) 1) 1(2)
Grade
2 5 (15) 3(9) 10 (17) 0.6335°
3 29 (85) 29 (91) 50 (83)
FIGO stage
nc 31 (91) 28 (88) 49 (82) 0.4243°
v 3(9) 4 (13) 11 (18)
Residual disease
Nil 1(3) 2 (6) 13 (22) 0.0227°
<1cm 18 (53) 21 (66) 24 (40)
>1cm 13 (38) 7 (22) 13 (22)
Size unknown 2 (6) 2 (6) 6 (10)
Not known 0 (0) 0 (0) 4(7)
Neoadjuvant therapy
Yes 3(9) 1) 0 (0) 0.0640°
No 31 (91) 31 (97) 60 (100)
Smoking
Never smoked 19 (56) 11 (34) 30 (50) 0.1433°
Ever smoked 13 (38) 16 (50) 18 (30)
Not known 2 (6) 5 (16) 12 (20)
Current status
Alive with no progression 0 (0) 0 (0) 29 (48) <0.0001°
Alive with progression 0 (0) 0 (0) 13 (22)
Dead 34 (100) 32 (100) 18 (30)
Progression-free survival from diagnosis (months)
Median 8.0 12.6 161.8 <0.0001°
Range 1.84-13.31 4.93-79.99 5.61-247.5
Overall survival from diagnosis (months)
Median 16.6 46.9 179.8 <0.0001°
Range 6.05-23.64 24.13-108.3 120.0-247.5
Extended Data Fig.1| Patient cohort. a, Overview of patients (n =126) and of patients by survival group. All patients received primary platinum therapy.
tumor samples analyzed in this study. In addition to paired germline and primary 3Kruskal-Wallis, °Chi-square, or log-rank Mantel-Cox test P values comparing
tumor samplesinall patients, 5 relapse tumor samples were also analyzed from survival groups reported.

4 long-term survivor patients. OS, overall survival. b, Clinical characteristics
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Extended Data Fig. 2| Frequently altered cancer genes across survival
groups. a, Overview of somatic alterations in driver genes detected by GRIN,
dNdScyv, GISTIC, and/or in cancer-associated genes (COSMIC Cancer Gene
Census) that are enriched in a survival group relative to another survival group.
From left: two-sided Fisher’s test of the difference in proportions of altered
samples between survival groups, triangles and color indicate direction of

the log odds ratio (LOR; blue =down, pink = up), asterisks indicate Pvalue <
0.05 (see Supplementary Table 6 for Pvalues), Pvalues were not adjusted for
multiple comparisons; role of gene in COSMIC Cancer Gene Census (TSG,
tumor suppressor gene); genomic alterations split by survival groups, bars at
the top indicate the number of alterations in each listed gene per patient; bar
plot of the number of samples with an alteration (alteration type indicated by
color); bar plots showing the proportion of alteration types per gene; Pvalues
were calculated using the genomic randominterval (GRIN) statistical model
(one-sided) for recurrent structural variants (SV) (see Supplementary Data 2 for
GRIN Pvalues), the dNdScv likelihood-ratio test (two-sided) for recurrent base
substitutions and small-scale deletions and insertions (see Supplementary
Datalfor dNdScv Pvalues), and GISTIC2 permutation-of-markers test
(one-sided) for recurrent copy-number variants (CNV) with red indicating

Enriched in STS

Difference in proportion

Enriched in MTS Enriched in MTS

Difference in proportion

amplification and blue indicating deletion (see Supplementary Data 3 for
GISTIC2 Pvalues), Pvalues were adjusted for multiple comparisons using the
Benjamini-Hochberg procedure (dNdScv, GISTIC2) or the robust false discovery
rate procedure (GRIN) and are shown as negative log,, P values and capped at
0.001for display purposes. Each patient (column) is annotated with survival
group (LTS, long-term survivor; MTS, moderate-term survivor; STS, short-term
survivor). Below the alterations are bar plots indicating somatic mutation burden
invariants per megabase (Mb); SV count including duplications, deletions,
inversions and intrachromosomal rearrangements; and the proportion of the
tumor genome that is duplicated (WGD) or lost (WGL). b, Pairwise comparison

of the alteration frequencies between survival groups for genes in the COSMIC
Cancer Gene Census. The difference in relative alteration frequency is shown on
the x-axis and the Pvalue (Fisher’s test, two-sided) is shown on the y-axis. Symbols
of genes with Pvalues < 0.05 are displayed. Multiple hypothesis correction

was not applied in this analysis as adjusted Pvalues were all greater than O.1.
Alterations in this analysis included non-synonymous mutations, homozygous
deletions, amplifications and structural variants in coding genes that are
expressed.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Key features of mutational signature clusters and
associated survival outcomes. a, Summary of the key clinical and genomic
features of each mutational signature cluster. Clusters are ordered top to bottom
by lowest to highest proportion of long-term survivors (LTS) in each cluster. HR,
homologous recombination; LOH, loss-of-heterozygosity; SV, structural variant;
MTS, moderate-term survivor; STS, short-term survivor; DUP, duplications; DEL,
deletions; INV, inversions. b, Kaplan-Meier analysis of progression-free and c,
overall survival in patients stratified by signature clusters. P values calculated

by Mantel-Cox log-rank test and dotted lines indicate median survival.d,

Boxplots summarize the proportion (y-axis) of clustered and nonclustered
rearrangements by size (x-axis) and type, for each mutational signature cluster
(SIG.1n=14,S1G.2n=25,S1G.3n=13,S1G.4 n=27,51G.5n=22,S1G.6 n=9,SIG.7
n=16); boxes show the interquartile range (25-75th percentiles), central lines
indicate the median, whiskers show the smallest/largest values within 1.5 times
theinterquartile range and values outside it are shown as individual data points.
Del, deletions; tds, tandem duplications; inv, inversions, tra, interchromosomal
translocations; Kb, kilobase; Mb, megabase.
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Extended Data Fig. 4 | Categorical features of mutational signature clusters.
a, Proportion of patients affected by gene alterations per mutational signature
cluster. Genes are ordered by significance using Fisher’s exact test (two-sided)
and clusters are ordered by the proportion of long-term survivors. b, Proportion
of patients with categorical features per cluster. Features are ordered by
significance using Fisher’s exact test (two-sided) and the clusters are arranged by
the proportion of long-term survivors. The Fisher’s test Pvalues displayed in (a)
and (b) are Benjamini-Hochberg adjusted Pvalues. Features include homologous

recombination (HR) status, homologous recombination deficiency (HRD) type,
number of DNA repair pathway alterations, survival group (LTS, long-term
survivor; MTS, moderate-term survivor; STS, short-term survivor), status at
last follow-up (D, dead; P, progressed and alive; PF, progression-free and alive),
self-reported smoking status, DeepCC molecular subtype (C1, mesenchymal;
C2,immunoreactive; C4, differentiated; C5, proliferative), and neoadjuvant
treatment (Y, yes; N, no).
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Extended DataFig. 5| Clinical and genomic features of mutational signature
clusters. a, Boxplots summarize numerical, clinical and genomic features by
mutational signature cluster; points represent each sample, boxes show the
interquartile range (25-75th percentiles), central lines indicate the median,
whiskers show the smallest/largest values within 1.5 times the interquartile
range, red triangles indicate the mean, and dotted lines join the means of

each cluster to visualize the trend. The Kruskal-Wallis test P values displayed
are Benjamini-Hochberg adjusted Pvalues. Features are ordered by their
significance and clusters are ordered by the proportion of long-term survivors.
CD8scores were available for n = 54 primary tumors as previously measured by
immunohistochemistry?* and scored as density of CD8+ T cells (average cells/
mm?, y axis) in the tumor epithelium (TE). HRD, homologous recombination

deficiency; DEL, deletions; DUP; duplications; SV, structural variants; Mb,
megabase; ITX, intrachromosomal rearrangements; LOH, loss-of-heterozygosity;
INV, inversions. b, Bubble plot summary of mutational signature enrichment
across signature clusters. The dendrogram s reused from the signature
clustering (Fig. 3) to order the mutational signature types (columns). Mutational
signature clusters (rows) are sorted by the proportion of long-term survivors

in each cluster, indicated in brackets. The color and size of bubbles indicate the
z-score scaled values of the mean signature exposure per cluster. Bubbles with
az-score of greater than or equal to1 have a black border and bubbles with a
z-score of greater than 0.5 but less than 1 have a gray border. Bordered bubbles
have asterisks filled in to indicate Kruskal-Wallis test P values adjusted for
multiple testing using Benjamini-Hochberg correction.
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Extended Data Fig. 6 | DNA methylation clustering of primary tumor
genomes. a, Heatmap of methylation data following consensus clustering of
primary tumors (columns) based on the standardized CpG probe intensities
(M-values) of the 1% most variable CpG probes (rows; number of probes = 3,645)
across all primary tumor samples (n =126). The heatmap scale shows the beta
values. Five methylation clusters were identified (MET.1-MET.5), and each
patient (column) is annotated with survival group (LTS, long-term survivor;
MTS, moderate-term survivor; STS, short-term survivor), age at diagnosis
(quartiles), and self-reported smoking history. Tumor samples are also classified
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Extended DataFig. 7| Transcriptional phenotypes in long-term survivors.
a, Clustered heatmap summarizing gene set enrichment analysis (GSEA) using
the hallmark Molecular Signatures Database (MSigDB) gene sets. Direction and
color of triangles relate to the normalized enrichment score (NES) as generated
by FGSEA. Pvalues (two-sided) were calculated using the FGSEA default Monte
Carlo method; the size of the triangles corresponds to the negative log,,
Benjamini-Hochberg adjusted Pvalue (P,). The columns are split by survival
groups (STS, short-term survivor; MTS, moderate-term survivor; LTS, long-
termsurvivor), with the direction of enrichment denoted by the group in the
heading (numerator) versus the two other groups labeled below. b, Boxplots
summarize expression of MKI67 and PCNA proliferation gene markers across the
survival groups (left; STSn=34, MTS n=32,LTS n = 60); points represent each
sample, boxes show the interquartile range (25-75th percentiles), central lines
indicate the median, and whiskers show the smallest/largest values within 1.5

times the interquartile range. Differential expression analysis was performed
using DESeq2 to determine fold change (right) of gene expression between
survival groups (two-tailed Wald test, both unadjusted P values and Benjamini-
Hochbergadjusted Pvalues (P,y) are shown). ¢, Forest plot (left) indicates the
hazard ratio (HR, squares) and 95% confidence interval (CI; whiskers) for overall
survival calculated using a univariate Cox proportional hazard regression model
based on the LM22 immune cell types detected by CIBERSORTx analysis (n =126
patients). Cell types are arranged by HR. Pvalues < 0.05 are colored red (*P < 0.05,
**P < 0.01) and were not adjusted for multiple comparisons. Absolute enrichment
scores per cell type across the cohort are shown inboxplots (right); boxes show
theinterquartile range (25-75th percentiles), central lines indicate the median,
whiskers show the smallest/largest values within 1.5 times the interquartile range
and values outside it are shown as individual data points.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Genomic and clinical features ofimmune clusters.

a, A condensed bubble plot of the various LM22 cell types used for the immune
clustering (IMM.1n=32,IMM.2n=23,IMM.3n=22,IMM.4 n=24,IMM.5 n = 25).
The dendrogram s reused from the immune clustering (Fig. 5a) to order the
celltypes. Immune clusters (rows) are sorted by the proportion of long-term
survivors indicated in brackets. The color and size of bubbles indicate z-score
scaled values of the mean abundance of cell types per cluster. Bubbles with a
z-score of greater than or equal to1 have ablack border, and those with a z-score
of greater than 0.5but less than1have agray border. Asterisks indicate Kruskal-
Wallis test Pvalues adjusted for multiple testing using Benjamini-Hochberg
correction. Boxplots (right) summarize CIBERSORTx absolute scores of each
cluster; points represent each sample, boxes show the interquartile range
(25-75th percentiles), central lines indicate the median, and whiskers show

the smallest/largest values within 1.5 times the interquartile range. b, Boxplots

summarize numerical, clinical and genomic features by immune cluster (IMM.1
n=32,IMM.2n=23,IMM.3 n=22,IMM.4 n =24,IMM.5 n = 25); points represent
each sample, boxes show the interquartile range (25-75th percentiles), central
lines indicate the median, whiskers show the smallest/largest values within

1.5 times the interquartile range, red triangles indicate the mean, and dotted
lines join the means of each cluster to visualize the trend. The Kruskal-Wallis
test Pvalues displayed are Benjamini-Hochberg adjusted. Features are ordered
by their significance and clusters are ordered by the proportion of long-term
survivors. CD8 scores were available for n = 54 primary tumors as previously
measured by immunohistochemistry?’ and scored as density of CD8+ T cells
(average cells/mm?, y axis) in the tumor epithelium (TE). HRD, homologous
recombination deficiency; DEL, deletions; DUP; duplications; SV, structural
variants; Mb, megabase; ITX, intrachromosomal rearrangements; LOH, loss-of-
heterozygosity; INV, inversions.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Categorical features ofimmune clusters. a, Proportion
of patients with categorical features per cluster. Features are ordered by
significance using Fisher’s exact test (two-sided) and the clusters are arranged
by the proportion of long-term survivors. Features include homologous
recombination (HR) status, homologous recombination deficiency (HRD) type,
number of DNA repair pathway alterations, survival group (LTS, long-term
survivor; MTS, moderate-term survivor; STS, short-term survivor), status at

last follow-up (D, dead; P, progressed and alive; PF, progression-free and alive),

self-reported smoking status, DeepCC molecular subtype (C1, mesenchymal;
C2,immunoreactive; C4, differentiated; C5, proliferative), and neoadjuvant
treatment (Y, yes; N, no). b, Proportion of patients affected by gene alterations
perimmune cluster. Genes are ordered by significance using Fisher’s exact test
(two-sided) and clusters are ordered by the proportion of long-term survivors.
TheFisher’s test Pvalues displayed in (a) and (b) are Benjamini-Hochberg
adjusted Pvalues.
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Data collection ~ WGS
Paired-end Whole Genome Sequencing (WGS) at 150bp was performed on HiSeq X Ten System machines.
Software used for WGS processing:
- FASTQC (v0.11.8)
- FastQ Screen (v0.11.4)
- ea-utils (v1.05)
- BWA mem (v0.7.17-r1188)
- Picard Tools (v2.17.3)
- GATK (v4.0.10.1)
- GATK (v3.8-1-0-gf15c1c3ef)
- FACETS (v0.6.1)
RNA-seq
Libraries were generated using lllumina Stranded mRNA Prep and 150 bp paired-end sequencing was performed on Illumina NovaSeq 6000
instruments.
Software used for RNAseq processing:
- FASTQC (v0.11.8)
- FastQ Screen (v0.11.4)
- ea-utils (v1.05)
- STAR(v2.6.0b)
- Picard Tools (v2.17.3)
- RSeQC (v2.6.4)

Methylation
Tumor DNA was bisulfite converted with the EZ DNA Methylation kit (Zymo Research) and assayed using the Infinium MethylationEPIC
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Data analysis

BeadChip arrays according to manufacturer’s instructions (lllumina).
Software used for Methylation data processing:

- minfi82 955 (v1.32.0)

- sva (v3.34.0)

SNP array

Tumor and matched normal DNA was assayed with the Infinium OmniExpress-24 BeadChip arrays, arrays scanned and data processed using
Genotyping module 2.0.3 software in GenomeStudio 2.0.3 to calculate logR ratios and B-allele frequencies according to manufacturer’s
instructions (Illumina).

Software used for SNParray data processing:

- HYSYS github version b730498 (https://github.com/PapenfussLab/HaveYouSwappedYourSamples)

- gPure v1.1 (https://sourceforge.net/projects/qpure/)

- ASCAT v2.5.2 (https://github.com/VanLoo-lab/ascat)

WGS

- VarDictJava (v1.5.7 with —r=2 -Q=10 -V =0.05 —f=0.01)

- Mutect2 (v4.0.11.0 with defaults)

- Strelka (v2.9.9 with defaults)

- VarScan2 (v2.4.3 with --min-coverage 7 --min-var-freq 0.05 801 --min-freg-for-hom 0.75 --p-value 0.99 --somatic-p-value 0.05 --strand-filter
0 & SAMtools v1.9 for mpileup)

- vt (v0.57721)

- GATK ReadBackPhasing (v3.8-1-0-gf15c1c3ef with --phaseQualityThresh 10 --enableMergePhasedSegregatingPolymorphismsToMNP --
min_base_quality_score 10 min_mapping_quality_score 10 --maxGenomicDistanceForMNP 2)

- GATK CombineVariants (v3.8-1-0-gf15c1c3ef with -genotypeMergeOptions UNIQUIFY -priority Strelka2, Mutect2, VarScan2, VarDictJava)
- GATK VariantAnnotator (v3.8-1-0-gf15c1c3ef with --reference_window_stop 1000 -A HomopolymerRun -A TandemRepeatAnnotator)
- BCFtools (v1.9)

- bam-readcount (v0.8.0 with -w 0 --min-mapping-quality 10 —

- min-base-quality 10 --max-count 100,000,000)

- Ensembl Variant Effect Predictor (VEP v92.4)

- Manta + BreakPointInspector (v1.5.0)

- GRIDSS (v2.0.1)

- Smoove (v0.2.2)

- SVABA (v134)

- StructuralVariantAnnotation (v1.3.1 with maxgap = 10, ignore.strand = FALSE)

- InteractionSet (v1.14.0)

- rtracklayer (v1.46.0)

- snp-pileup(v1.0 with --pseudo-snps 100 --min-map830 quality 10 --min-base-quality 10 --max-depth 5000 --min-read-counts 15,0)

- cnv_facets (v0.13.0 with --nbhd snp=500 --cval=50 1000 --depth=15 5000)

- CHORD (v2.00)

- csaw (v1.20.0)

- ICAMS v2.0.10.9001

- rstatix (v0.7.0)

- signature.tools.lib (v0.0.0.9000 with SignatureFit_withBootstrap [method = “KLD”, nboot = 100, randomSeed = 42, threshold_percent = 2,
threshold_p.value = 0.05])

- ConsensusClusterPlus (v1.50.0 with maxK = 10, reps=1000, pltem=0.9, pFeature=0.9, clusterAlg=“pam”, distance="pearson”,
innerLinkage="ward.D2”, finalLinkage="ward.D2”, seed=12345678)

- seriation (v1.3.0 with method="0LO")

- HLA-VBSeq (v11_22_2018)

- Jvarkit samviewwithmate (ec2c236)

- samtools (v1.9)

- deepTools (v3.0.0 with parameters --binSize 10 --minMappingQuality 10 --normalizeUsing CPM --skipNonCoveredRegions --samFlagExclude
1024 --outFileFormat bigwig)

- pVACtools pVACseq (v1.3.5)

- dNdScv (v0.0.1.0 with refdb = “hg19”, sm = “192r_3w”, max_muts_per_gene_per_sample = Inf, max_coding_muts_per_sample = Inf,
use_indel_sites= FALSE)

- GRIN (v1.4)

- GISTIC2 (v2.0.23 with -savegene 1 -maxspace 1000 -ta 0.1 -td 0.1 -rx O -cap 3 -broad 0 —twoside 1 -res 0.05 -genegistic 0 -v 10)

- maftools (v2.2.10)

- Mutalyzer (v2.0.35)

-R(v3.6.3)

- Prism (v9.2.0)

RNA-seq

- HTSeq (v0.10.0 with mode = “intersection-nonempty”)
- edgeR (v3.28.1)

-limma (v3.42.2)

- DeepCC (v0.1.1)

- DESeq?2 (v1.26.0)

- fGSEA (v1.15.1)

- CIBERSORTx web version as at 05/21/2020 (https://cibersortx.stanford.edu/)
- ConsensusClusterPlus (v1.50.0)

- Arriba (v1.1.0)

-R(v3.6.3)

Methylation
-limma (v3.42.2)
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-R(v3.6.3)

Feature correlation
- polycor (v0.8-1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

ICGC dataset: Previously published WGS and RNA-seq data generated as part of the ICGC Ovarian Cancer project14 are available from the European Genome-
phenome Archive (EGA) repository (https://ega-archive.org) as a single bam file for each sample type (tumor/normal), under the accession code EGADO0001000877
(https://ega-archive.org/datasets/EGADO0001000877). Due to the sensitive nature of these patient datasets, access is subject to approval from the ICGC Data
Access Compliance Office (https://docs.icgc.org/download/data-access/), an independent body who authorizes controlled access to ICGC sequencing data. ICGC
SNP array and methylation data sets have been deposited into the Gene Expression Omnibus (GEO; https://www.ncbi.nIm.nih.gov/geo/) under accession code
GSE65821 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65821), without access restrictions. ICGC gene count level transcriptomic data has been
deposited into the GEO under accession code GSE209964 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE209964).

MOCOG dataset: WGS, RNA-seq and SNP array data from long-term survivors generated as part of the MOCOG study have been deposited in the EGA repository
under accession code EGAS00001005984 (https://ega-archive.org/studies/EGAS00001005984). WGS and RNA-seq data are available as raw FASTQ files for each
sample type (tumor/normal) and SNP array data are available as raw signal intensity files in text format for each sample type (tumor/normal). Access to patient
sequence data can be gained for academic use through application to the independent Data Access Committee (dac@petermac.org). Responses to data requests
will be provided within two weeks. Information on how to apply for access is available at the EGA under accession code EGAS00001005984. The MOCOG cohort raw
methylation data sets have been submitted to the GEO under accession code GSE211687 (https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE211687), with
no access restrictions.

Uniformly processed somatic variant data from the ICGC and MOCOG cohorts is deposited in Synapse under accession code syn34616347 (https://
www.synapse.org/#!Synapse:syn34616347), and processed expression and methylation data from both cohorts has been submitted into the GEO under accession
code GSE211687 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE211687), without access restrictions.

Population frequencies of genetic variants can be accessed via the Genome Aggregation Database (gnomAD) at https://gnomad.broadinstitute.org/. Supporting
evidence for pathogenicity of genomic alterations can be accessed via ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), BRCA Exchange (https://brcaexchange.org/)
and the TP53 Database (https://tp53.isb-cgc.org/). The Ensembl ranked order of severity of variant consequences is available at: https://m.ensembl.org/info/
genome/variation/prediction/predicted_data.html. Precomputed TCGA ovarian serous cystadenocarcinoma survival analysis data can be downloaded from Oncolnc
(http://www.oncolnc.org/). Mutational signature reference databases can be accessed via COSMIC (https://cancer.sanger.ac.uk/signatures/) and Signal (https://
signal.mutationalsignatures.com/). The LM22 signature matrix used for immune cell deconvolution can be downloaded here: https://cibersortx.stanford.edu/. The
COSMIC Cancer Gene Census can be accessed here: https://cancer.sanger.ac.uk/census. MSigDB hallmark gene sets can be accessed here: https://www.gsea-
msigdb.org/gsea/msigdb/. lllumina methylation probes that were filtered out due to poor performance (e.g. cross reactive or non-specific probes) can be found
here: https://github.com/sirselim/illumina450k_filtering. Germline polymorphic sites for reference and variant allele read counts used in FACETS analysis can be
found at ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/common_all_20180423.vcf.gz. The GTF used for annotation and RNA-seq
counts is available here: ftp://ftp.ensembl.org/pub/grch37/release-92/. All other data are available within the article and its supplementary information files.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
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Sample size No sample size calculations were performed. A limited number of cases were available given the rarity of high-grade serous ovarian cancer
long-term survivors, with fresh frozen tumor tissue and matched germline samples available.

Data exclusions  Two tumor samples were flagged as outliers with a high somatic mutation rate (>20 mutations/Mb): AOCS-076 due to cross sample
contamination and AOCS-166 due to a germline mutation in the mismatch repair gene PMS2. The two samples were therefore excluded from
further analyses.

Replication Due to the rarity of tumor tissue from long-term survivors and the high cost of genomic assays, WGS, RNA-sequencing, SNP arrays and
methylation arrays were performed once for each sample. Supporting evidence for variants detected by WGS were sought in orthogonal
datasets, such as SNP array, clinical sequencing, RNA-sequencing or DNA sequencing of matched samples (e.g. germline and tumor) from the
same patient (Supplementary Tables 3, 4 and 5). CCNE1 amplification status determined by WGS data was verified by FISH and
immunohistochemistry data available from a previous study (Aziz et al 2018). CIBERSORTx immune scores were verified with CD8+ T cell
scores determined by multi-color immunohistochemistry and automated image scoring from our previous study (Garsed et al 2018), which
confirmed the identification of the two long-term survival immune clusters (IMM.1 and IMM3). Mutational signature analyses were informed
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by and/or consistent with previous analyses of breast, ovarian and pan-cancer genomic datasets (Alexandrov et al 2013, Patch et al 2015,
Popova et al 2016, Alexandrov et al 2020, and Degasperi et al 2020). DNA methylation clustering identified a BRCAl-altered subset (MET.1)
that overlapped with the poor outcome BRCA1 mutational signature subgroup (SIG.5), providing an independent marker of this group. To our
knowledge, this is the first WGS, DNA methylation and RNA-seq analysis of HGSC long-term survivors, so there is currently no equivalent
dataset available in which to validate the genomic and immune signatures, however where possible we sought validation of findings in an
independent dataset (The Cancer Genome Atlas Research Network et al 2011).

Randomization  Randomization was not applicable as this study did not involve an intervention. Long-term survivors were compared with patients with similar
known survival predictors: histology, grade, age at diagnosis, stage, treatment, etc. (Extended Data Fig. 1b).

Blinding Blinding was not undertaken. Genomic and clinical data was uniformly processed and analyzed across all samples/cases.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies D ChiIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology IZ D MRI-based neuroimaging
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Human research participants

Policy information about studies involving human research participants

Population characteristics Patients were diagnosed with advanced stage (FIGO Stage 11IC/IV), high-grade serous cancer (ovarian, fallopian tube or
primary peritoneal carcinoma) confirmed by histopathology review, received primary chemotherapy incorporating a
platinum-based compound, and met survival group criteria; either short-term survivors (death within 2 years); moderate-
term survivors (death >2 and <10 years); or long-term survivors (overall survival > 10 years). Population characteristics are
provided in Extended Data Fig. 1 and Supplementary Table 1. All 126 patients are female and were aged 29-81 years.

Recruitment Patients were recruited to the population-based Australian Ovarian Cancer Study (AOCS), Peter MacCallum Cancer Centre
(Melbourne, Australia), the Gynaecological Oncology Biobank (GynBiobank), Westmead Hospital (Sydney, Australia) or the
Mayo Clinic (Rochester, USA) under Research Ethics Committee approval for each study. Written informed consent was
provided by all patients. Participation was voluntary, with no compensation provided to participants.

1. Patients over the age of 18 (and under 80 for AOCS) with invasive epithelial ovarian cancer (or primary peritoneal or
fallopian tube cancer) were recruited through major cancer treatment centers across Australia (AOCS and GynBiobank) and
in the USA (the Mayo Clinic), generally at the time of initial diagnosis.

2. Surgical resection samples: Tissue samples for research were taken from tissue removed during surgery and were excess to
diagnostic requirements. Sampling of surgical tissue was undertaken by a trained pathologist to ensure that samples taken
for the purposes of research did not affect histopathological assessment. Samples were snap-frozen and stored for future
research, with patient consent.

3. Surgical, pathology, systemic treatment and clinical outcome data was collected from medical records during regular
longitudinal clinical follow-up. Cases were selected for the current study based on pre-specified criteria, including advanced
stage disease (FIGO Stage IIIC/1V), histology (HGSC), primary treatment (platinum-based chemotherapy), availability of
biospecimens for analysis (snap frozen tumor tissue and blood), and survival within the three specified survival groups (death
within 2 years; death >2 and <10 years; overall survival > 10 years). This may represent a potential bias towards patients with
tumors of sufficient size, and a high proportion of tumor cells within the research sample, to enable analyses.

AOCS recruited patients <80 years old, which could result in an increased proportion of long-term survivors compared to
studies without an upper age limit, because the chance of surviving >10 years if diagnosed over 80 would be lower (due to
older age), however ages are consistent between survival groups and not likely to impact the results. No other sources of
selection bias were identified.

Ethics oversight The Peter MacCallum Cancer Centre Human Research Ethics Committee (HREC), the Western Sydney Local Health District
HREC, and the Mayo Clinic Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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